

CCCHHHAAAPPPTTTEEERRR 777

Annotating on Maps

Purpose: This chapter demonstrates how to annotate markers and paths on maps.

Annotating Simple Point Markers

Many times, all you want to do is place simple markers at specific locations on a map.

You’re not trying to represent any data with the size/color/shape of the markers – you

just want to mark some locations. Let’s start with this simple case, and later we’ll work

our way up to more complex variations.

For example, let’s place markers on a map for a few of the cities in Texas. The following

code will get the latitude and longitude (lat/long) for the desired cities from one of the

datasets that come included with SAS/Graph. Of course, you don’t have to get the

lat/long from this file – you could get the coordinates any way you want and store them

in a similar dataset (look them up in a book, get them from a GPS, do a Google search,

etc).

data anno_cities; set mapsgfk.uscity

(where=(statecode='TX' and

 city in ('Houston' 'Dallas' 'Lubbock' 'San Antonio')));

flag=1;

run;

The resulting dataset looks like this:

SAS/GRAPH: The Basics

Next, you’ll need the map of Texas. When plotting lat/long values on a map, I

recommend using maps from the mapsgfk libname (in this case mapsgfk.us_states) rather

than the traditional/old SAS maps such as maps.states. The reason being that your city

coordinates are likely to be in eastlong degrees, and the mapsgfk maps are already in

these coordinates (whereas the old/traditional SAS map coordinates are in westlong

radians, and you would either have to convert your map or your city coordinates so that

they match).

Here’s the code to subset Texas out of mapsgfk.us_states (using the lower density values

will create a map that shows slightly less detail around the borders, and the code will

also run a little faster):

data my_map; set mapsgfk.us_states

 (where=(statecode='TX' and density<=3));

run;

Our end goal is to plot markers at the city coordinates on the map. But first, it might be

useful to see everything (the map border coordinates and the city coordinates) in a scatter

plot, just so you can get a better feel for the data, and make sure that your city

coordinates are lining up with your map coordinates. Here’s the code to do that (a little

‘fancier’ than necessary, but I wanted the graph to look pretty for the book!)

data combined; set my_map anno_cities; run;

symbol1 value=dot height=1.8 interpol=none color=gray55;

symbol2 value=dot height=3 interpol=none color=red;

axis1 major=(number=5) minor=none value=(c=blue)

 offset=(0,0);

proc gplot data=combined;

label lat='lat' long='long';

plot lat*long=flag / nolegend

 vaxis=axis1 haxis=axis1 noframe

 autohref autovref chref=graydd cvref=graydd;

run;

Chapter 7: Markers on Maps

The next step is to project the map and city lat/long coordinates, to get the projected y &

x coordinates you will plot with Proc GMap. In the case of Texas, projecting the

coordinates doesn’t make much visual difference in the shape of the map, but the farther

north you go, the more important projecting the coordinates becomes. Whether the map

visually needs projecting, it is the ‘proper’ thing to do, and I recommend you always go

through this step.

There are a couple of different ways you could project the coordinates, but the one I use

most frequently is to combine the map and the annotate data, project them together, and

then separate them into two datasets again. Here’s the code to do that (notice that I’m

using the flag variable to separate the two datasets – this is the main purpose of having

the flag variable). The GProject options signify that the coordinates are in eastlong

degrees (as opposed to westlong radians), and stored in the lat and long variables (as

opposed to y and x).

data combined; set my_map anno_cities; run;

proc gproject data=combined out=combined

 eastlong degrees latlong dupok;

id statecode;

run;

SAS/GRAPH: The Basics

data anno_cities my_map; set combined;

if flag=1 then output anno_cities;

else output my_map;

run;

The resulting datasets contain projected values, stored in the X and Y variables. Here’s a

scatter plot so you can easily see what the data looks like:

The map dataset is ready to plot with Proc GMap, but the annotate datset (for the cities)

still needs a little work. Currently, it has the following variables that we’ll be using:

Chapter 7: Markers on Maps

In order to annotate markers at those x/y coordinates, we’ll need to add a few variables to

the dataset so that annotate will know what to do. The xsys and ysys tell annotate that the

X and Y variables are in the same coordinate system as the map. The hsys tells it how to

handle the size variable. When=’a’ tells it to draw the annotation after it draws the map

(so it will be in front of the map, rather than behind it). And the rest of the variables tell

it to draw a solid red pie at the specified x/y location.

data anno_cities; set anno_cities;

length function $8;

xsys='2'; ysys='2'; hsys='3'; when='a';

function='pie'; style='psolid'; rotate=360; size=1;

 color='red';

run;

Here’s are the essential variables of the completed annotate dataset:

SAS/GRAPH: The Basics

Now we can draw the map (with Proc GMap) and tell it to use anno_cities as the

annotate dataset, with the following code:

title1 ls=1.5 "Some Cities in Texas";

pattern1 v=s c=white;

proc gmap map=my_map data=my_map anno=anno_cities;

id statecode;

choro segment / levels=1 nolegend coutline=gray88;

run;

Chapter 7: Markers on Maps

One simple enhancement that is often useful, is to annotate a text label in addition to the

pie marker. You can do this using the … you guessed it! … the label annotate function!

The following code annotates the city with each marker. The position=’2’ causes the

label to be above the marker, and I reset the style/rotate/size/color variables so the

default text characteristics will be used.

data anno_cities; set anno_cities;

length function $8 text $100;

xsys='2'; ysys='2'; hsys='3'; when='a';

function='pie'; style='psolid'; rotate=360; size=1;

color='red'; output;

function='label'; position='2';

style=''; rotate=.; size=.; color='';

text=trim(left(city)); output;

run;

Here’s the resulting dataset:

And we can create the map using the same code as before:

title1 ls=1.5 "Some Cities in Texas";

pattern1 v=s c=white;

proc gmap map=my_map data=my_map anno=anno_cities;

id statecode;

choro segment / levels=1 nolegend coutline=gray88;

run;

SAS/GRAPH: The Basics

Chapter 7: Markers on Maps

The following are a few examples of SAS maps with annotated markers at specific

coordinates. Some are simple, and some are a bit fancier …

SAS/GRAPH: The Basics

Chapter 7: Markers on Maps

Annotating Bubble Markers

What if you want to represent some response data (such as population or sales) at the

specified latitude/longitude locations? Instead of using a simple point marker, you might

consider using bubbles of varying size, and maybe varying color. The technique is

essentially the same as point markers (see example above), but with the size and/or color

variables in the annotate dataset controlled by values in the data.

Of course, I don’t want you to get bored, therefore instead of using the exact same

example, let’s use something new where I can also teach you a few other tricks along the

way. Instead of using mapsgfk.uscity (which already has the latitude/longitude), let’s just

start with a list of cities and their population:

data anno_pies;

format population_2013 comma12.0;

input population_2013 city $ 9-50;

statecode='TX';

anno_flag=1;

datalines;

1258000 Dallas

2196000 Houston

1409000 San Antonio

 100223 Tyler

;

run;

We can now use the cool (relatively new) Proc Geocode to estimate the latitude and

longitude centroid of each city. Note that I used the name ‘statecode’ instead of ‘state’ in

my data, so that it will match my map data. And similarly, I rename ‘x’ and ‘y’ to ‘long’

and ‘lat’ to match the variables used in the map dataset.

SAS/GRAPH: The Basics

proc geocode data=anno_pies

 out=anno_pies (rename=(x=long y=lat))

 addressstatevar=statecode method=city;

run;

Now that we have the lat/long centroids, we can combine the response data with the map,

gproject them, and separate them again (similar to the previous example):

data my_map; set mapsgfk.us_counties

 (where=(statecode='TX' and density<=1));

run;

data combined; set my_map anno_pies; run;

proc gproject data=combined out=combined

 eastlong degrees latlong dupok;

id statecode county;

run;

data my_map anno_pies; set combined;

if anno_flag=1 then output anno_pies;

else output my_map;

run;

Chapter 7: Markers on Maps

We now need to add a few variables to the dataset, so that it can be interpreted as

annotate commands. This is the same as was explained in the previous example, except

this time the size is based on the population, and the color is based on the city name. The

size is the radius of the pie, and I want calculate a radius (size) that makes the area of the

bubbles proportional to their population. I use the following equation (where the .007 is

just a scaling factor): size=sqrt(population_2013/3.14)*.007. Note that there are two

observations for each bubble – one to draw the solid filled bubble, and one to draw a

gray outline around it

data anno_pies; set anno_pies;

xsys='2'; ysys='2'; hsys='3'; when='a';

length function style $8 color $20;

function='pie'; rotate=360; style='psolid';

run;

data anno_pie1; set anno_pies;

size=sqrt(population_2013/3.14)*.007;

if city='Dallas' then color='cx1464F4';

else color='cxFFFF00'; output;

style='pempty'; color='gray33'; output;

run;

SAS/GRAPH: The Basics

The resulting map looks pretty good – there is a bubble marker at each city, with the size

is proportional to the population and the color controlled by the city (let’s say, for

example, we want Dallas to be blue because it’s the distribution hub for our imaginary

company). But what if we wanted more visual ‘impact’ from the bubbles, and therefore

we wanted them to be bigger? That’s easy – we can just increase the scaling factor

(currently .007) in the size equation: size=sqrt(population_2013/3.14)*.007. Let’s

increase it to .02 …

data anno_pie2; set anno_pies;

size=sqrt(population_2013/3.14)*.02;

if city='Dallas' then color='cx1464F4';

else color='cxFFFF00'; output;

style='pempty'; color='gray33'; output;

run;

Larger bubbles can be problematic though – they obscure the map, and could even

obscure other bubbles. In situations like this, my favorite work-around is to use

transparent colors to fill the bubbles. Whereas you specify a regular RGB color using

cxRRGGBB, you specify a transparent color as aRRGGBBnn (where nn is a

hexadecimal number that controls the amount of transparency, with a low nn being more

transparent, and a high nn being more solid). In this case, instead of using cxFFFF00

(yellow), simply use aFFFF0077 (transparent yellow), then you can better see the state

borders and overlapping bubbles:

Chapter 7: Markers on Maps

data anno_pie3; set anno_pies;

size=sqrt(population_2013/3.14)*.02;

if city='Dallas' then color='a1464F4aa';

else color='aFFFF0077';

output;

style='pempty'; color='gray33'; output;

run;

And there you have it – large bubbles, that don’t obscure the map or the other bubbles!

SAS/GRAPH: The Basics

The following are some real-world examples of maps with bubble markers, of varying

sizes, annotated at specific locations on maps …

Chapter 7: Markers on Maps

SAS/GRAPH: The Basics

Annotating Bubbles at Map Polygon Centroids

With a traditional choropleth map, you can represent the amount (or magnitude) of the

data values with the colors or shades of the areas in the map. For example, let’s create a

map showing the population of the states in the northeast US, from the sashelp.us_data

dataset. Below is the code that subsets the data, and plots it on a simple choro map:

data my_data;

set sashelp.us_data (where=(region='Northeast'));

run;

title1 ls=1.5 "Northeast US Population";

legend1 label=none across=1 position=(top left) mode=share

 order=descending shape=bar(.15in,.15in) offset=(8,-8);

proc gmap map=maps.us data=my_data;

id statecode;

choro population_2010 / coutline=graycc legend=legend1;

run;

Chapter 7: Markers on Maps

A choro map is often a good way to plot data on a map, but there are several limitations.

Since not all map areas are the same size, it is often difficult to easily compare the

values. For example, what if a very small state has a very large population? … The state

would be in the brightest color, but it wouldn’t make a very big visual impact because of

the small size of the state. One alternative that makes it easier to compare the values is to

use bubbles to represent the data values. Then the varying physical sizes of the states are

not an issue, because you’re visually comparing the sizes of the bubbles.

Unlike the gmap block map (which plots a bar in the middle of each map polygon – in

this case states), there is no built-in option to plot a bubble in the middle of each state.

We have to calculate the x/y location where we want the bubble, and then annotate a pie

(bubble). The following code subsets the map to get just the states we want, and then

uses the SAS %centroid macro to estimate the x/y center of each state:

data my_map; set maps.us (where=(statecode in

 ('CT' 'ME' 'MA' 'NH' 'NJ' 'NY' 'PA' 'RI' 'VT')));

run;

%annomac;

%centroid(my_map,state_centroids,state);

Now that we’ve got the centroid for each state, let’s merge that data with our response

data (in this case the population), and then we’ll have the basis for our annotate dataset

(anno_bubbles). There are several ways to merge data in SAS – my favorite is using

SQL. Note that you don’t need to have the numeric state fips code (state) or the 2-

character state abbreviation (statecode), but I like to include such variables because they

make it easier to verify the results …

proc sql;

create table anno_bubbles as

select unique state_centroids.*,

 my_data.statecode, my_data.population_2010

from state_centroids left join my_data

on state_centroids.state=my_data.state

SAS/GRAPH: The Basics

order by population_2010 descending;

quit; run;

Now it’s just a simple matter of adding a few more variables to the dataset so that it can

be used as an annotate dataset to draw the bubbles. The variables are pretty much the

same as the ones in the previous example. Here’s the data step code, followed by the first

few observations of the dataset:

data anno_bubbles; set anno_bubbles;

length color $9;

xsys='2'; ysys='2'; hsys='3'; when='a';

function='pie'; rotate=360;

size=sqrt(population_2010/3.14)*.003;

style='psolid'; color='cxEE2C2C'; output;

style='pempty'; color='grayaa'; output;

run;

And now it’s a simple matter of plotting a blank choro map, and annotating the bubble

markers on it!

Chapter 7: Markers on Maps

title1 ls=1.5 "Northeast US Population";

pattern1 v=s c=white;

proc gmap map=my_map data=my_map anno=anno_bubbles;

id statecode;

choro segment / levels=1 nolegend coutline=gray88;

run;

And, similar to the previous example, you can use bigger bubbles (multiply the size by

.008 instead of .003), and a transparent color (aEE2C2C99 instead of cxEE2C2C) to get

a slightly different look …

SAS/GRAPH: The Basics

Here are a couple of real-world examples, where markers were annotated at the centroids

of the map areas …

Chapter 7: Markers on Maps

SAS/GRAPH: The Basics

Annotating Paths

Sometimes you don’t want to annotate individual markers on a map, but rather a series of

connected locations. Perhaps you want a line representing locations where a person,

vehicle, or animal have been. Or perhaps you’re plotting a highway or railroad tracks on

a map. This is another situation where annotate comes in handy.

All you need is some latitude/longitude points along the path, and then you can connect

those points with an annotated line.

For this example, I’ll use a simplified version of the proposed Atlantic Coast Pipeline

route. I’m only including a few of the data points here, to make it easier for you to copy-

n-paste (if you download my code from the samples page, you’ll get extra points along

the route).

data anno_route;

input lat long;

flag=1;

datalines;

39.17 -80.57

39.15 -80.55

39.14 -80.45

39.10 -80.41

39.02 -80.32

38.83 -80.11

38.50 -79.68

38.27 -79.41

38.21 -79.16

37.91 -78.80

37.41 -78.42

37.13 -77.96

36.92 -77.86

36.47 -77.55

35.62 -78.12

35.19 -78.68

34.74 -79.19

;

run;

Here’s what the first few lines of data look like:

Chapter 7: Markers on Maps

Now you’ll want to get the map, combine it with the point data, and then project them. In

this case, since the pipeline will be going through three states, we’ll want those three

states (NC, VA, and WV) in our map. Let’s subset the map based on the density values,

so that fewer points will be used, and the borders will look slightly less busy.

data my_map; set mapsgfk.us_counties

 (where=(statecode in ('NC' 'VA' 'WV')

 and density<=2) drop=resolution);

run;

data combined; set my_map anno_route;

run;

proc gproject data=combined out=combined

 latlong degrees eastlong dupok;

id statecode county;

run;

data my_map anno_route; set combined;

if flag=1 then output anno_route;

else output my_map;

run;

Now that the lat/long coordinates in our map and our annotated route have been

projected into X/Y coordinates that will look good on a flat page, let’s add some annotate

commands to tell SAS what to do with the X/Y points in the annotated route dataset.

First, so you can ‘see’ where the points will show up on the map, let’s plot them as red

dots, using the annotate pie function.

SAS/GRAPH: The Basics

data anno_route; set anno_route;

length function $8 color $8 style $35;

xsys='2'; ysys='2'; hsys='3'; when='a';

function='pie'; style='psolid'; rotate=360;

color='red'; size=.5;

run;

And now we can easily plot a simple/blank map, and specify the above data using the

anno= option, and get the following map:

pattern1 v=s c=white;

proc gmap data=my_map map=my_map all anno=anno_route;

id statecode county;

choro segment / levels=1 nolegend coutline=grayd0;

run;

Chapter 7: Markers on Maps

But what we really want to do is connect the points with a line, therefore let’s modify the

annotate dataset and use the annotate move and draw functions, rather than the pie

function. To connect the points with a line, you’ll want to move to the first observation

(which is at the beginning of the route), and then you’ll want to draw to each of the

following points.

data anno_route; set anno_route;

length function $8 color $8;

xsys='2'; ysys='2'; hsys='3'; when='a';

if _n_=1 then function='move';

else function='draw';

color='red'; size=.5; style=’’; rotate=.;

run;

SAS/GRAPH: The Basics

proc gmap data=my_map map=my_map all anno=anno_route;

id statecode county;

choro segment / levels=1 nolegend coutline=grayd0;

run;

Chapter 7: Markers on Maps

And now that we’ve got the line annotated on the map, let’s annotate some title text

(we’re annotating, rather than using the built-in title statements, so that the titles can

share the map space instead of being at the top of the page).

data anno_text;

length function $8 color $8 style $35 text $100;

xsys='3'; ysys='3'; hsys='3'; when='a';

function='label'; position='5'; style='albany amt/bold';

color="red"; size=4.7;

x=20; y=92; text="Atlantic Coast"; output;

y=y-5.5; text="Pipeline"; output;

color="grayaa"; size=3.5;

x=70; y=90; text="Proposed Route"; output;

run;

And now we can produce the final map! …

proc gmap data=my_map map=my_map all anno=anno_route;

id statecode county;

choro segment / levels=1 nolegend coutline=grayd0

 anno=anno_text;

run;

SAS/GRAPH: The Basics

And now, here are a few real-world examples of paths annotated on a map …

Chapter 7: Markers on Maps

SAS/GRAPH: The Basics

Chapter 7: Markers on Maps

Annotating Borders

SAS/Graph Proc GMap is only designed to represent 1 level of borders on a map. For

example, if you’re plotting a county map, GMap only shows the county borders (not the

state borders). Therefore if you want to show extra levels of borders, you’ll need to do a

little extra work. As with most customizations, we can use annotate to add the extra

borders.

 Let’s start with a county map of North and South Carolina. Since we’re subsetting this

out of the US map, we’ll need to project it (otherwise it will look ‘crooked’ since it was

projected based on the center of the US rather than the center of the Carolinas).

data my_map; set mapsgfk.us_counties (where=(statecode in

('NC' 'SC') and density<=2) drop=resolution);

run;

proc gproject data=my_map out=my_map

 latlong eastlong degrees;

id state county;

run;

title1 ls=1.5 "North and South Carolina";

pattern1 v=s c=white;

proc gmap map=my_map data=my_map;

id state county;

choro segment / levels=1 nolegend coutline=grayaa;

run;

SAS/GRAPH: The Basics

There are two states in this map, but it is difficult to quickly tell where one stops and the

other starts, without the state borders shown. The first step to annotating the state borders

is to create an actual map of the state borders, using Proc GRemove. We could

hypothetically use the state map, but we would have to take special care to project it in

exactly the same way the county map was projected … and even then there’s no

guarantee that the state map would be showing the exact same areas as the county map

(especially when it comes to showing river & coastal borders, islands, etc). Therefore I

always like to use the exact same map, and GRemove the unwanted internal borders –

this guarantees the borders in the state map will match the county map! (You don’t really

need to plot this intermediate map, but I’m plotting it so you can see that it is indeed a

map dataset.)

proc gremove data=my_map out=anno_outline;

by state notsorted;

id county;

run;

proc gmap map=anno_outline data=anno_outline;

id state;

choro segment / levels=1 nolegend coutline=grayaa;

run;

Chapter 7: Markers on Maps

And now the final step is to convert the state outline map dataset into an annotate dataset

that will simply draw the state outlines. The first observation of each state will become

the annotate ‘poly’ function, and all subsequent observations will be ‘polycont’. Poly

tells annotate to start drawing a new polygon, and polycont tells annotate to continue

drawing the polygon. When annotate encounters the last polycont observation, it then

connects that point back to the first one. You might be asking why we didn’t use “by

state” – we could do that in most cases, but since some states could have multiple

segments, it’s best to use “by state segment”. This code can be re-used with most any

map that has a compound id, by simply changing the ‘state’ and ‘county’ variables to the

variables used in your map.

data anno_outline; set anno_outline;

by state segment notsorted;

length function $8 color $8;

color='gray33'; style='mempty'; when='a'; xsys='2';

ysys='2';

if first.segment then function='poly';

else function='polycont';

run;

Here are the first few observations in the anno_outline dataset (notice that I’m making

the annotated state outline a little darker than the county borders):

SAS/GRAPH: The Basics

And now we can annotate the state outlines on the county map, using the following code:

proc gmap map=my_map data=my_map anno=anno_outline;

id state county;

choro segment / levels=1 nolegend coutline=graydd;

run;

On the following pages are some examples of fancier maps created using this technique.

Note that in the above simple example I’m not actually plotting any response data on the

map (all the map areas are the same color), but of course you can also use this technique

on a colored choro map where you’re plotting response data.

Chapter 7: Markers on Maps

SAS/GRAPH: The Basics

Chapter 7: Markers on Maps

